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ABSTRACT

Safeguarding limited resources for an organization’s most critical assets can be difficult when decision-makers at different
corporate hierarchy levels have different objectives and needs. Prioritizing resources in a manner that aligns with the
organization’s strategic goals requires expertise and knowledge at all corporation levels. DePalmer et al. (2021) explored the
opportunity to quantify the relationship between facilities and the operations they support using a Mamdani fuzzy
inference system. This research extends the previous work by incorporating multi-level perspectives of the facilities and the
operations they support outside of the tactical campus. Additionally, the authors simulated various risk attitudes to
investigate how subjective inputs at the tactical level can affect strategic-level outputs. This research produces a framework
that aggregates junior-level facility knowledge depth with the breadth of senior-level operational and strategic knowledge to
support decision-making for facility project prioritization. An additional prediction boundary is created from the risk
attitude variance and can give portfolio managers data-driven tools for quality control of risk profiles at individual campus
locations.

1.0 Introduction

Authorizing facilities and infrastructure projects in a

manner that aligns with organizational objectives can be

difficult when the organization has a multi-level, hierar-
chical structure (Hafezalkotob and Hafezalkotob 2017).

The leaders of these complex organizations are responsible

for many dispersed operating locations and or facilities and
face the arduous task of making decisions for a built asset

portfolio for which they may rarely have physical oversight.

To ensure facility prioritizations reflect both the organi-

zational objectives and local operational realities, company
leadership should rely on a mixture of both local facility

manager input and corporate influence. Regardless of the

organization’s hierarchical management structure, e.g.,
functional, divisional, or matrix, a multi-level framework

that targets bottom-up prioritization could more accurately

reflect the value generated by facilities, provided the

organization clearly represents its objectives in the
organizational framework (DePalmer et al. 2021). This

research aims to expand previous research by DePalmer et

al. (2021) to account for multi-level input in prioritizing
facilities by assessing Dependency and analyzing various

risk attitudes among decision-makers participating in the

prioritization process.

Corporate hierarchy refers to the layers of vertical
authority within a company based on job function and
status (Kenton 2020; Reitzig and Maciejovsky 2015).
Typically pyramid shaped with the most influential
positions located towards the top, a corporate hierarchy
can represent a chain of command of decision-making
authority and scope of responsibility for organizational
goals (Kenton 2020). In this paper, the authors will refer to
the tactical, operational, and strategic level of an organi-
zation and the mission it supports. Mission, although
typically used in a military or government context, can be
interpreted by civilian institutions as the tasks, job, or goals
of the company (‘‘Mission’’ 2021). The tactical level refers
to the lowest level of the organization responsible for day-
to-day facility operations and the local decision making
required to accomplish the mission. The operational level is
a higher level of corporate hierarchy, usually responsible for
the coordination, definition, and direction of the tactical
level, or multiple tactical mission sets. The strategic level is
the highest level or corporate hierarchy, with the respon-
sibility of establishing and defending the mission of the
organization as a whole and may be responsible for
multiple operational missions. In simplistic terms tactical,
operational, and strategic levels of management can be used
to define the ‘‘how’’ (tactical), ‘‘what’’ (operational), and
‘‘why’’ (strategic) of an organization’s mission (White
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2009). Each level of hierarchy may have different
organizational objectives and expertise areas. For example,
the corporation’s strategic level sets the company’s
direction or goals but is blind to a single facility’s
operations at the tactical level. Conversely, a facility
manager understands how the facility enables the opera-
tions at the tactical level, but not its role at the strategic
level. The corporation’s value of the facility is determined
with information from all levels. When facilities must
compete at higher levels of the organization for funding,
their value must be accurate and comparable. The
organization can represent these hierarchy levels in many
ways such as local, regional, and national; tactical,
operational, and strategic; city, county, and state; etc.
Incorporating expert facility information from each
hierarchy level ensures the corporation can prioritize the
most critical sustainment and maintenance projects within
an extensive and diverse project portfolio.

Facility project prioritization methodologies focus on
three necessary steps for project prioritization: (1)
identifying factors important to decision-making, (2)
evaluating these factors, and (3) ranking the projects
(Akgun et al. 2010; Andres et al. 2016; Bowles and Peláez
1995; Bozbura and Beskese 2007; Jamshidi et al. 2013;
Markowski and Mannan 2008; Moazami et al. 2011;
Shaygan and Testik 2019). The essential factors used for
project prioritization and their respective weighting should
align with the organization’s strategic objectives (Hannach
et al. 2016). However, this previous research identified by
DePalmer et al. (2021) failed to incorporate information
for corporations with an organizational hierarchy of
decision-making for facility operation. It also fails to
quantify how external influences of human decision-
making from subjective inputs affect the results.

Realistically, project prioritization methodologies can
expand across multiple levels of the corporate hierarchy.
Decision-maker input value may depend on the company’s
structure and the decision-makers’ expertise level or
position (Hafezalkotob and Hafezalkotob 2017; Yazdi et al.
2020). Corporations may value junior-level decision-maker
inputs equally to senior-level inputs, using a democratic-
style decision-making process, or they could favor a more
autocratic style, giving final judgment to the senior
decision-maker. Few studies have incorporated hierarchical
decision-making and the effect on final prioritizations.
Hafezalkotob and Hafezalkotob (2017) was the first study
focused on this topic by incorporating fuzzy best-worst
method to create an optimal weighting system model for
integrating senior and junior decision-maker opinions
during decision making. More recently, Yazdi et al. (2020)
developed a model for prioritizing system failures for a
supercritical water gasification system using Failure Mode
Effects Analysis (FMEA), which is flexible for autocratic
and democratic decision-making processes.

Technology-oriented decision tools, such as decision
support systems (DSS), are commonly used to enhance the
quality of human decision-making, encourage rational
thinking, reduce bias, and avoid errors (Phillips-Wren et al.

2019). Decision-making is useful when a proposed solution
is related to desired goals and relevant to the decision in
question (Power et al. 2019). However, cognitive biases,
individual decision styles, and risk attitudes are all internal
influences for human decision-making that allow decision-
makers to believe their choices are rational when in reality,
these factors influence them towards a sub-optimal
decision (Phillips-Wren et al. 2019). Cognitive processing
limitations cause people to rely on heuristics to reduce
complexity when asked to determine subjective judgments
(Tversky and Kahneman 1974). Tversky and Kahneman
identified three significant heuristics commonly used in
decision-making to predict values and assess probabilities:
representativeness, availability, and anchoring. These
heuristics can influence how individual decision styles and
cognitive biases affect decision-makers and how they
interact with the decision support tool. Additionally, the
personal risk attitudes of the decision-makers can influence
rational decision-making. Decision-makers are typically
modeled as risk-taking, risk-neutral, or risk-averse to
determine the degree to which risk attitudes can impact the
way agents will interact with the technology-based DSS
(Delorit and Block 2020; Holt and Laury 2002; Phillips-
Wren et al. 2019). Risk-averse individuals may overestimate
subjective inputs, while risk-taking attitudes may under-
estimate these same variables. Improving the quality of
decisions can be accomplished when the DSS considers the
influences seen on the decision-makers. System architects
should build tools with the constraints of human decision-
making in mind (Kahneman and Tversky 2012; Phillips-
Wren et al. 2019; Power et al. 2019; Tversky and Kahneman
1974). The researchers included a sensitivity analysis to
understand how subjective input variance in human
decision-making can affect the operational and strategic
consequence of failure scores determined in this method-
ology.

Rational decision-making for portfolio prioritization
requires quantifying risk to understand alternative out-
comes (Kaplan and Garrick 1981). Since the 1980s,
researchers have studied risk. Researchers have yet to
establish a standardized risk formula due to the diverse risk
analysis applications and the complex relationships be-
tween identifying direct and indirect risk variables
(Karimpour et al. 2016). The linguistic terms used to
categorize and estimate risk invite uncertainty and bias into
the risk assessment (Akgun et al. 2010; Jamshidi et al. 2013;
Karimpour et al. 2016; Markowski and Mannan 2008;
Nelson 2019). Many assessment methodologies like ana-
lytical hierarchy process (AHP) (Bozbura and Beskese 2007;
Moazami et al. 2011; Shaygan and Testik 2019); failure
mode, effects, and criticality analysis (FMECA) (Bowles
and Peláez 1995); risk matrices (Markowski and Mannan
2008); and vulnerability assessments (Akgun et al. 2010)
have used fuzzy logic to capture uncertainty in risk
assessments. Karimpour et al. (2016) determined the
benefits for integrating fuzzy logic with risk assessments
include: expressing the possibility rather than the likeli-
hood of an outcome; using logical rules rather than
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complex arithmetic formulas; using insufficient, vague, or
imprecise data; and the ease for managers to understand
results. Some of the disadvantages of fuzzy logic are the
need for subjective inputs and the expert knowledge
required to establish rules and calibrate membership
functions (Karimpour et al. 2016; Zadeh 1965). These
benefits suggest that fuzzy logic is a tool that DSS designers
can use to improve human decision-making quality with
technology-oriented decision tools.

Despite the significant contributions of the aforemen-
tioned topics, there are gaps in the literature about fuzzy
prioritization methods for organizations with a hierarchical
structure. This paper addresses those gaps by aggregating
lower-level expert information of a system’s Interrupt-
ability, Replicability, and Intra-Dependency with higher-
level Inter-Dependency inputs utilizing a fuzzy inference
system. Interruptability indicates how fast the impact to
campus’s overall operations would be if functional
capabilities of the facility were interrupted. Replicability
indicates how difficult it would be for the campus to
relocate or replicate its functional capabilities if the facility
were interrupted (Savatgy et al. 2019). Intra-dependency
shows the percent of other mission sets at the lower level
that relies on the facility’s operations for success. This
paper introduces additional hierarchy-levels and informa-
tion about Inter-Dependency. Inter-Dependency is distin-
guished from Intra-Dependency as it indicates the percent
of other mission sets at the higher levels of operation that
rely on the facility’s operations for mission success. This
system architecture provides information for how a single
facility failure can affect the corporation’s overall strategic
objectives by determining a consequence of failure metric
at each hierarchical level of the company for prioritizing
resources. The authors expanded DePalmer et al. (2021)
research to the company’s operational and strategic
organizational hierarchy level. Organizations value senior-
level expertise for its broader scope of responsibility and
knowledge about the system in which each facility operates.
Junior-level expertise is valued because of their in-depth
understanding of the facility and its link to tactical
objectives. A sensitivity analysis is performed on the junior-
level results to show how subjective judgment can affect
overall results. Corporate leadership can use this informa-
tion to ensure a bias-reduced decision-making process is
used to calculate the consequence of facility failure for
corporate strategic objectives.

2.0 Case Study and Background: The United States
Air Force Mission Dependency Index

The United States Air Force is a large, complex, and
diverse corporation that could benefit from a repeatable
risk assessment methodology to prioritize facility con-
struction and sustainment projects. Like many other
private and public corporations, the Air Force’s strategic
objectives are not profit-motivated and will need to assess
risk and prioritize projects without using a cost-based
analysis (Hannach et al. 2016; National Research Council

2004). Corporations with similar objectives and organiza-
tional structure of the Air Force also need a simple,
repeatable process that can help them assess the conse-
quence of failure across individually operated and spatially
distributed campuses or assets. Additional operational and
strategic decision-maker input is essential to organizations
whose tactical operations are independently run to focus
momentum and ensure proper direction towards its
strategic objectives. The methodology currently used by the
United States Air Force to prioritize their portfolio is risk-
based and can be integrated with fuzzy logic to improve
decision-making and optimize resource allocation (De-
Palmer et al. 2021). The improvements to the methodology
proposed in this paper apply to other hierarchical
organizations that use a consequence of failure metric to
make risk-based decisions or prioritizations.

The Air Force Civil Engineer Center (AFCEC) currently
requires Air Force Civil Engineers to create an annual
Integrated Priority List (IPL) of candidate facility im-
provement projects that must compete for approval and
funding (AFCEC 2020). The IPL is a list of facility projects
ordered by highest to lowest technical score. The technical
score indicates to decision-makers a level of risk to the
organization if the project goes unfunded. Engineers
calculate the technical score by multiplying the project’s
Probability of Failure (PoF) with its Consequence of
Failure (CoF). This quantitative method of risk assessment
works well with accurate numerical values but can be
misleading if engineers are using qualitative and biased data
to estimate the PoF or CoF. PoF is determined using
historical data from the Air Force’s Sustainment Manage-
ment System BUILDER. BUILDER is a web-based database
used to track and project an asset’s physical condition using
local inspections and typical degradation curves of
equipment. The inspection and equipment data are used to
create a 1-100 Condition Index (CI) score for each asset in
a facility, with a CI of 1 representing significantly degraded,
and a CI of 100 indicating an asset in perfect condition.
Project justification may include the condition of multiple
assets, which are aggregated by a cost-weighted calculation
to create an overall condition of the project. This CI score
of the project is inversely related to the PoF used in
technical scoring. PoF represents the current condition on
a scale of 1 to 100, with one being the best condition
(lowest PoF) and 100 being the worst (highest PoF). The
CoF is a measurement of facility importance and also
measured on a scale of 1 to 100, with one being the least
important and 100 being the most important (the highest
consequence of failure). Engineers calculate the CoF by
combining the facility’s Mission Dependency Index (MDI)
and the project’s priority ranking from senior-level
decision-makers. MDI is a semi-qualitative metric used by
the Department of Defense and other similar government
agencies like NASA to quantify the relationship between
facilities and the mission they enable (Antelman et al. 2008;
Antelman and Miller 2002; Savatgy et al. 2019). The
project’s priority ranking by senior-level decision-makers is
a subjective ranking, but valuable to the Air Force to ensure
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leadership perspective remains an important factor in
determining the final project approval scores. AFCEC
combines all installation’s IPL to make funding authori-
zation decisions from highest to lowest technical project
score. This order ensures the Air Force allocates funds to
the highest-scoring projects across the enterprise first, due
to limited resources available each year (AFCEC 2020).

Presently, Air Force Civil Engineers calculate tactical
MDI with a traditional risk matrix constituted by a
likelihood and severity analysis of Replicability and
Interruptability. Each variable is broken into four catego-
ries, producing a possibility of 16 combinational outcomes.
Although traditional risk matrices are low-cost to assemble
and simple to use, they are heavily criticized for their sub-
optimal mathematical analysis and are easily prone to
errors through user cognitive biases or subjective categories
(Cox 2008; Duijm 2015; International Electrotechnical
Commission 2019; Li et al. 2018; Siefert and Smith 2011).
The logarithmic scale and additive scoring combination
used for the MDI variables result in risk score ties, reducing
granularity further, and providing 14 unique MDI matrix
scores between 100 and 40. To increase the range of
possible MDI scores, the Air Force re-scores all assets with
an MDI of 40 based on the facility type (Savatgy et al.
2019). This methodology is problematic because it
inaccurately links the MDI score to the facility’s type rather
than its function. Without considering a facility’s function,
comparing two identical storage facilities by type would
result in both receiving the same mission dependency
score. This is an inaccurate representation of mission
dependency since the first storage building houses neces-
sary and expensive medical equipment and the other
houses excess office furniture. Even though both are
categorized as conditioned storage warehouses, the func-
tion of the facility is necessary to identify an accurate MDI
score. The re-scoring by function process can lead to
mismatched MDI scores and the need for an additional
score adjudication process (Blaess 2017; Nichols 2015;
Smith 2016).

DePalmer et al. (2021) investigated the MDI prioritiza-
tion methodology. They integrated the process with a fuzzy
logic inference system (FIS) that used the inputs of
Interruptability, Replicability, and Dependency to output a
CoF score, identified as tactical MDI (TMDI). This
methodology builds upon the TMDI FIS to include senior-
level Inter-Dependency information at the organization’s
operational and strategic levels. Senior-level decision-
makers currently determine priority ranking points with
only qualitative data. Qualitative data is simple and can be
used when quantitative data is unavailable, inadequate, or
under a limited budget and time constraints (Radu 2009).
Unfortunately, qualitative assessments do not provide
enough information for extensive evaluations, do not
capture uncertainty, and are incredibly subjective data
points (International Electrotechnical Commission et al.
2019). Senior-level decision-makers can use priority points
to manipulate the final technical score of projects and
tarnish the risk assessment’s validity and objectivity, project

prioritization methodology, and approval process. This
research does not include changing the PoF metric. Instead,
it focuses on integrating fuzzy logic as a risk-assessment
methodology at all of the organization’s hierarchy levels to
eliminate the need for senior-level priority ranking in the
CoF metric and simultaneously create a more accurate and
less biased project prioritization methodology.

The mission dependency index’s operational and stra-
tegic value goes beyond project prioritization for AFCEC’s
integrated priority list. Corporate leadership and facility
planning teams can use this metric to understand how
specific facilities enable operations at their location and
how each facility is linked to other critical infrastructure or
mission sets throughout the organization. Additionally,
MDI can be used to differentiate between primary or
secondary operations within a facility or installation, link
operations to space needs, or model dynamic mission needs
at the operational or strategic level (Heron et al. 2017).
Every level of the organization can use the tactical,
operational, or strategic level information this system
produces to understand how a facility failure may have
cascading effects, allowing decision-makers to make better
choices for the organization as a whole.

3.0 Methodology

The authors expanded the fuzzy logic methodology used
in DePalmer et al. (2021) to account for multi-level input
for prioritizing facilities with an assessment of Inter-
Dependency and an analysis of how a variety of risk
attitudes from decision-makers can affect the prioritization
process. The system is shown in Figure 1 and specifies this
research’s scope compared to DePalmer et al. (2021). This
study makes use of the initial results from the Air Force’s
TMDI re-baselining survey. For this survey, local facility
managers used a traditional risk matrix to quantify their
facility’s Replicability and Interruptability for over 54,000
facilities at 79 installation (campus) locations worldwide.
The tactical mission dependency index output by the initial
fuzzy system, was combined with operational level
knowledge (Inter-Dependency) and used as crisp (non-
fuzzy) inputs for the Operational Mission Dependency
Index (OMDI) score. The output OMDI score was then
combined with strategic level knowledge (Inter-Depen-
dency) and used as crisp inputs to the Strategic Mission
Dependency Index (SMDI) score.

The tactical level MDI score provides information about
the Interruptability, Replicability, and Intra-Dependency of
a facility (DePalmer et al. 2021). The Operational Mission
Dependency Index (OMDI) score and Strategic Mission
Dependency Index (SMDI) score use the outputs of the
score produced at the subordinate hierarchical level as crisp
inputs to their fuzzy inference system (FIS). Each FIS runs
in series to one another to provide separate output results
at each hierarchy level. Information from each tier is
independent of one another since the fuzzy system hides
the fuzzified subordinate level’s inputs. The resultant CoF
outputs of TMDI, OMDI, and SMDI indicate the risk to
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different hierarchical levels from a facility’s outage or
failure.

3.1 Building the Operational and Strategic Dependency
FIS

The FIS used in this work follows the same four-step
process as the previous research of DePalmer et al. (2021):
(1) membership functions are designed to enable contin-
uous input; (2) membership functions are developed for
outputs; (3) rules for the risk-based-matrix and fuzzy
system are established; (4) outcomes are evaluated
graphically to ensure the prioritization of facilities is
consistent with decision-maker priorities. It is essential that
the system designers accurately calibrate the membership
functions to fit the expert’s logical rules because each
component of the fuzzy logic system influences the
outcome.

Step 1. Establish membership functions for inputs: The
operational FIS used TMDI and operational Inter-Depen-
dency as inputs. The Tactical FIS, previously established by
DePalmer et al. (2021), outputs a crisp TMDI score that is
re-fuzzified into the Operational FIS. Inter-Dependency is
defined here by the number of facilities, expressed as a
percent of total missions at the operational level, that
depends on the success of the facility in question. Inter-
Dependency is divided into three membership functions of
High, Medium, and Low, and is the other half of the input
for OMDI. The Strategic FIS operates identically to the
Operational FIS, though it uses OMDI and strategic Inter-
Dependency as input categories.

The authors determined membership functions for all
inputs to be triangular and trapezoidal for the system’s
simplicity. Triangular membership functions were used to
simplify the model and for their effectiveness representing
uncertainty between categories. Trapezoidal membership
functions were used on the boundaries of the system
indicating all values above or below this range exist at the
highest degree of membership. TMDI and OMDI were
divided into five membership functions (Very Low, Low,
Medium, High, Very High) to simulate the commonly
classified MDI risk categories established by the Navy and
Army (Amekudzi and McNeil 2008; Grussing et al. 2010).
The risk levels determined each category’s boundaries, and
the range of values was set from [0,100], similar to the
existing MDI score range. All membership functions for
TMDI and OMDI inputs were equally spaced from 0 to
100. System designers can calibrate these functions to fit
leadership and decision-maker needs. The authors deter-
mined the membership function’s range by aligning each
category’s peak with equal spacing between categories to
achieve a maximum score of 100 and a minimum score of
0. Inter-Dependency was divided into three trapezoidal
membership functions and had a range of [0, 1]. The Inter-
Dependency range was set with the intent that there was a
maximum value of 100% and a minimum value of 0%.
This range was set to indicate the percentage of other
facilities at the operational or strategic level that relied on a
facility’s success. The authors determined Low, Medium,
and High membership function limits with realism and
practicality in mind. Fuzzy degrees of truth had equal rates

FIGURE 1.—Paper scope and methodology for Strategic Mission Dependency Index (SMDI) creation. The blue text is the focus of this
research, and the red text indicates research completed by DePalmer et al. (2021). The black text indicates important aspects of the project
technical scoring methodology but is not specifically researched in depth. Fuzzy system boundaries and input variables are marked with a
dashed line, while solid lines indicate a crisp input value.
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of change between Low - Medium and Medium - High
dependency levels. Input fuzzy set ranges and linguistic
terms are summarized in Table 1. These membership
function ranges and limits can be easily calibrated to match
an organization’s leadership or decision-maker opinions.
This fuzzy system establishes a clearly defined evaluation
process with common terminology (National Research
Council 2004). For additional detail on the construction
and function of the FIS, readers are directed to DePalmer et
al. (2021).

It is important to note that a corporation’s leadership
can re-define Inter-Dependency, or set a different analysis
metric based on organizational objectives. Inter-Depen-
dency links tactical, operational, and strategic levels based
on Air Force stakeholders’ communications. It is pur-
posefully simplified here to maintain the interpretability of
results, aligning with the Air Force’s strategic purpose for
its MDI framework. Dependency assessment is modeled as
independent at the tactical, operational, and strategic levels
and is determined by an unbiased analysis of connections
between facilities. That is, TMDI inputs and outputs are
hidden from operational level assessors when assigning
inter-dependencies, as well as OMDI, during the strategic
assessment. This blind input system was intended to limit
influence from the human decision-making biases but
could be eliminated based on decision-maker preferences.

Step 2. Establish membership functions for outputs:
The operational level FIS outputs the OMDI value, and the

strategic level FIS outputs the SMDI value. The OMDI and
SMDI fuzzy inference systems are identical in function and
therefore are described as one system in this section. The
output was divided into five membership functions to
match the commonly classified MDI risk categories
established by the Navy and Army (Amekudzi and McNeil
2008; Grussing et al. 2010). The risk levels determined each
category’s boundaries, and the range of values was set from
[0,100] to match the existing TMDI score range. Triangular
membership functions were used to simplify the model and
for their effectiveness representing uncertainty between
categories. All membership functions were equally spaced
from 0 to 100 and can be calibrated to fit leadership and
decision-maker opinions. The outer boundaries of Very
Low and Very High were set beyond this range so that the
centroid method of defuzzification’s minimum and
maximum values of TMDI would be 0 and 100. The output
fuzzy set ranges and established terms are displayed in
Table 1. For additional detail on the construction and
function of the FIS, readers are directed to DePalmer et al.
(2021).

Step 3. Establish rules for the fuzzy system: The fuzzy
inference system maps fuzzified hierarchy-level MDI and
Inter-Dependency inputs to hierarchy level outputs to
create a crisp CoF score. The rules established for the
inference system determine the actions of the system and
are presented simply as:

TABLE 1.—FIS Membership functions and input ranges for each hierarchy level MDI score
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IF x1 is Ai1 and x2 is Ai2 and . . . xr is Air

THEN y is Bi for i ¼ 1;2;3 . . . kð Þ ð1Þ

Where xi is the input variable; Air and Bi are linguistic
terms; y is the output variable; and k is the number of rules.
This structure is simple compared to other approaches, and
it simulates the complexity of human decision-making (Lee
1990).

Rules for the fuzzy logic system were determined for
applicability of the system and shown in Figure 2. The
authors created 15 Boolean-logic rules for each depart-
ment-level FIS to correspond to all the possible Inter-
Dependency and department-level MDI outcomes within
the fuzzy systems. The Medium Inter-Dependency level was
used as the baseline for the operational-level FIS, and
outputs were either increased or decreased for High and
Low Inter-Dependency. The strategic-level FIS started with
the Low Inter-Dependency as the expected baseline
response and increased or decreased the final consequence
output accordingly. These rules were set as examples for
building the system architecture and need to be calibrated
and established by the organization’s correct asset man-
agement experts. The fuzzy system’s rules link inputs and
outputs and must reflect the system owner’s needs.

This system continues the fuzzy inference methodology
from DePalmer et al. (2021) using a Mamdani fuzzy model.
This Mamdani model applies the minimum operator for
the ‘‘AND’’ method and the maximum operator for the
‘‘OR’’ method of rules. The defuzzification method used
for the operational and strategic level was the centroid
method. Centroid defuzzification returns the center of
gravity of the fuzzy set along the x-axis (Equation 2).

x ¼
P

i l xið ÞxiP
i l xið Þ

ð2Þ

Where l xið Þ is the degree of truth for point xi on the
universe of discourse U . For additional detail on the
construction and function of the FIS, readers are directed
to DePalmer et al. (2021).

Step 4. Evaluate outputs graphically: The FIS’s outputs
for Operational MDI and Strategic MDI were evaluated by
reviewing the surface plots produced. The final fuzzy risk
surfaces show the difference in output consequence as the
department-level MDI and Inter-Dependency change
(Figure 3). As expected, the rules and membership
functions of the system determine the final fuzzy surface. It
is paramount that corporate experts choose the appropriate

rules for each FIS’s calibration to ensure the final surface
reflects the organizational objectives and the linkages
between different organizational levels of input. For this
research, both surfaces must have positive or zero slopes for
the Z-axis. This slope ensures that as the inputs increase,
the CoF at each department-level does not decrease as their
inputs increase.

Since the framework has each hierarchy in series, it is
essential to recognize that the resulting outputs are re-
fuzzified for inputs at the higher level and only reflect the
department’s crisp consequence score. For example, the
OMDI will equal 100 when the TMDI is held at 100, and
operational Inter-Dependency increases from Medium to
High. A facility classified as [100, 0.5] (TMDI ¼ 100,
Operational Inter-Dependency ¼ 50%) at the Operational
level will have the same OMDI score of 100 as a facility
classified as [100, 0.90] (TMDI ¼ 100, Operational Inter-
Dependency ¼ 90%). When both of these output OMDI
consequences are used in the Strategic FIS, they have an
equal opportunity to change. The SMDI FIS does not see
the Inter-Dependency difference at the operational level; it
only sees the resulting OMDI score of 100. While the
system’s primary goal is to create an overall prioritization
method, leadership can use CoF’s crisp outputs at each
level for better strategic decision-making in other portfolio
management areas besides competing for project authori-
zation funds. Additional details are provided in the
discussion.

3.2 Sensitivity Analysis and Simulating Data
Decision-makers at all levels can be tricked into believing

they are making rational decisions when, in reality, they are
influenced by their cognitive biases and personal risk
attitudes (Kahneman and Tversky 2012; Phillips-Wren et
al. 2019; Power et al. 2019; Siefert and Smith 2011). When
resources are limited, these sub-optimal decisions lead to
wasted efforts. System architects should analyze these
influences and uncertainties and put protection measures
in place to mitigate them. System architects can use fuzzy
logic in semi-quantitative risk assessments to capture the
uncertainty between classes of objects (Duijm 2015;
Markowski and Mannan 2008; Zadeh 1965). Once this
uncertainty is analyzed, acceptable tolerances can be
determined by the organization’s leadership to quality
control the system. Additionally, the scaling or descriptions
used for the universe of discourse for inputs can be

FIGURE 2.—Boolean logic rules established for the Operational (a, left) and Strategic (b, right) level FIS.
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adjusted and calibrated to avoid ambiguity or subjectivity

of crisp inputs.

His is correct, thank you for This range ensures the crisp

inputs vary only between the uncertainty between catego-

ries. For example, if the TMDI survey response for

Replicability was ‘‘Extremely Difficult’’, the distribution of

simulated crisp inputs would range from [3.5, 4.5]. A

triangular membership function was used because of the

simplicity of setting maximum, minimum, and peak

location for each simulated response’s crisp input. Figure 4

shows the simulated response ranges for results within the

membership functions, and Table 2 identifies maximum

and minimum values used for crisp input simulations. The

maximum and minimum values of each triangular

distribution were set for all survey responses, and the peak

location varied between these limits. Because the Available

and No Mission Impact categories were not part of the

original TMDI survey, the authors assumed no more than

25% of assets would be identified to have Replicability or

Interruptability crisp inputs of less than 1 (less than 0

degrees of membership of Prolonged or Possible). The

range for the Prolonged and Possible responses between

[0.75, 2.5] was set with this limit in mind. The triangular

distributions were varied with Equation 3.

FIGURE 4.—How maximum and minimum limits for triangular distribution were established to simulate crisp inputs for TMDI survey
results

FIGURE 3.—Risk surface plot for a (left) Operational MDI, and b (right) Strategic MDI.
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b ¼ aþ D ið Þ c � að Þ ð3Þ
Where a is the minimum limit to the triangular

distribution, b is the peak value of the triangular
distribution, and c is the maximum limit to the triangular
distribution. D represents the decision maker’s personal
attitudes and ranges from 0 to 1. A decision-maker’s i, risk
attitude of D ¼ 0indicates the maximum level of risk-
taking, and D ¼ 1 indicates the maximum level of risk-
aversion. A decision-maker with D ¼ 0:5 means a risk-
neutral attitude. When decision-makers have a D¼ 0 value,

the distributed results have a peak value bð Þ at the
minimum value (a) for the subjective input. This would
indicate that the decision-makers have a risk-taking
attitude, and the crisp inputs belong closer to the category
below, reducing the crisp input of the subjective variable
and potentially the final consequence of failure score.

The tactical, operational, and strategic level Dependency
responses were simulated to validate the fuzzy logic
system’s architectural framework. Crisp input values of
Dependency ranged from 0 to 1 and were determined using
a Pearson distribution. Each department level’s distribution
values can be seen in Table 3. The cumulative distribution
of simulated Dependency inputs can be seen with the
membership functions overlayed in Figure 5, showing the
difference between the tactical, operational, and strategic
level distributions. Other distributions would affect the
overall results of the sensitivity analysis.

TABLE 2.—Maximum and minimum values used for simulating
triangular distributions for crisp inputs to TMDI survey responses
of Interruptability and Replicability.

Variable Category Minimum a Maximum b

Interruptability Immediate 4.5 5.5

Brief 3.5 4.5

Short 2.5 3.5

Prolonged 0.75 2.5

No Mission Impact 0 0.75

Replicability Impossible 4.5 5.5

Extremely Difficult 3.5 4.5

Difficult 2.5 3.5

Possible 0.75 2.5

Available 0 0.75

TABLE 3.—Simulated dependency values for tactical, operational,
and strategic level

Department

Level Mean l
Standard

Deviation r Skewness

Kurtosis

(Normal ¼ 3)

Tactical 0.6 0.166 -0.75 3

Operational 0.5 0.166 0 3

Strategic 0.4 0.166 0.75 3

FIGURE 5.—Dependency Cumulative Distribution Function plot, describing the density of each department level’s simulated crisp
dependency input.
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These values were determined with the assumption that
facilities become less Inter-Dependent as they increase in
managerial level. This assumption is because facilities
should be highly Intra-Dependent at the tactical level due
to their geographic proximity and the need for entire
operating locations to function independently. Conversely,
as the hierarchy level increases, the facility is less likely to be
unique or provide services across the entire department’s
responsibility scope. For example, each tactical-level
location may have a facility that has a high Inter-
Dependency at their campus. This facility is useful at the
tactical level and commonly found at every location.
Because this requirement is satisfied at multiple campuses,
the operational level may not classify the need for a high
Inter-Dependency between that specific facility and other
campuses since their needs are being met locally.

4.0 Results

The fuzzy system was successfully implemented to
produce the consequence of failure scores at each
department level with simulated response inputs. These
results are specific to the simulation inputs, and true results
will be dependent on the verified responses from decision-
makers at the tactical, operational, and strategic depart-
ment levels. Simulated results were used to determine the
final fit parameters of the polynomial regression. Although
stylized, this process can be repeated with true results, and
multi-level influence can be analyzed at a low computa-
tional cost. This analysis can inform future investments and
serve as quality control for locations with unacceptable risk
tolerance.

The cumulative distribution function percentiles were
plotted and fit with a polynomial regression line to quantify
the effect of decision-maker risk attitudes on MDI
variability across the range of possible scores. The
polynomial regression coefficients and goodness of fit
statistics can be seen in Table 4, and the results of the
expected MDI and the 95% prediction bounds for each
hierarchy level can be seen graphically in Figure 6. These
results will change as the membership functions and rules
are calibrated by decision-makers and serve the purpose of

creating an acceptable risk attitude boundary for the
proposed prioritization framework.

Although specific to the assumptions made for this
simulation, these types of quantifications give senior-level
quality control managers data-driven tools to ensure
responses fall within expected or acceptable ranges and can
be used to identify outlier locations or assess whether
categorical risk behavior exists within sections of the MDI
range. Like upper and lower control limits, the 95%
prediction bounds serve as the threshold for acceptable risk
attitude behavior. The width of the bounds indicates the
uncertainty associated with the fitted risk curve. Non-
simultaneous observation bounds measure with 95%
confidence that a new observation will lie within the
interval specified given the predicted inputs of CDF
percentile and department-level MDI (MathWorks, Inc
2020). The prediction bounds are useful for a case-by-case
analysis of a base’s overall risk profile and for company
leadership to understand the expected variance of results. If
a campus’s results are within the boundaries, their
responses are within the expected risk tolerance threshold.
If an operating location’s risk profile is outside of these
thresholds, the location’s responses may require a manual
review. This review can identify if locations need
supplementary education about properly using the system
or if there are assets that need redistribution or additional
redundancies to ensure each portfolio has a balanced risk
profile. Additionally, this review can reveal extreme risk
attitudes that may warrant extreme risk-aversion due to
security concerns at the campus location.

In the final results for SMDI (Figure 6c), there are two
prominent vertical asymptotes at SMDI 50 and SMDI 75.
These asymptotes are due to the large percentage of flat
surface area on the FIS’s produced risk surface (Figure 3b).
The risk surface is a visual translation of the determined
fuzzy rules for the FIS. These asymptotes can be avoided by
adjusting the rules or adding more granularity to the
framework through additional membership functions for
possible outputs. These vertical asymptotes indicate MDI
score ties and can make determining the order to fund
facilities a challenge for leadership if the financial funding
limit were to fall between multiple assets with equal SMDI.
The rules and membership functions for the true system
should be calibrated to minimize risk score ties.

TABLE 4.—Polynomial Regression Coefficients and Goodness of Fit Statistics for Tactical, Operational, and Strategic level Risk Attitudes

Generalized Fit Model f xð Þ ¼ p1x2 þ p2x þ p3

Department Level Coefficients (95% confidence bounds) R-square Adj R-Square SSE RMSE

Tactical p1 ¼ �3:52 3 10�5 �4:19 3 10�5;�2:83 3 10�5ð Þ 0.96 0.96 1.60 0.06

p2 ¼ 1:37 3 10�2 1:30 3 10�2; 1:45 3 10�2ð Þ
p3 ¼ �7:04 3 10�2 �8:79 3 10�2;�5:29 3 10�2ð Þ

Operational p1 ¼ �2:64 3 10�5 �3:20 3 10�5;�2:09 3 10�5ð Þ 0.97 0.97 1.14 0.05

p2 ¼ 1:28 3 10�2 1:22 3 10�2; 1:34 3 10�2ð Þ
p3 ¼ �5:07 3 10�2 �6:46 3 10�2;�3:68 3 10�2ð Þ

Strategic p1 ¼ 3:26 3 10�5 1:95 3 10�5; 4:57 3 10�5ð Þ 0.94 0.94 2.46 0.07

p2 ¼ 1:20 3 10�2 1:06 3 10�2; 1:34 3 10�2ð Þ
p3 ¼ �0:23 �0:27;�0:20ð Þ
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FIGURE 6.—Cumulative Distribution Plot for tactical (a, top), operational (b, middle), and strategic (c, bottom) department levels
showing the change in cumulative distribution as decision-maker attitude is altered. The blue dashed lines indicate the 95% prediction
bounds for the fitted risk curve.
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5.0 Discussion

In addition to adding dimensionality, Inter-Dependency
from the operational and strategic levels of a corporation
can help facility management teams better understand a
facility failure’s overall impact. These inputs are valuable
for facilities that enable organizational goals beyond the
department-level. Figure 7 shows a Low-Medium TMDI
score that is transformed into a High-Very High conse-
quence score through the OMDI and SMDI evaluations
due to a high degree of operational and strategic
Dependency on the facility’s mission. This example
demonstrates how multiple department-level consequence
scores should be taken into consideration during corporate
facility prioritization. This example also demonstrates the
limitation of the prioritization methodology if it only takes
into account the tactical level of knowledge about a facility
and the operations it enables. Creating crisp MDI outputs
at each hierarchical level within the organization reveals
how the risk value differentiation affects the score, enables
better risk-based decisions, and increases the understanding
of the non-linear impact facility failure may have on the
various levels of the organization.

The prediction bounds established in the risk attitude
sensitivity analysis create a boundary of acceptable risk
tolerance for department levels or responding groups. By
establishing these boundaries, quality control managers can
ensure users are interacting with the system appropriately
and portfolio risk profiles are balanced to an acceptable
level across operating location and facility type. The
resulting prediction bounds were examined at the tactical
level for five different Air Force Base locations seen in
Figure 8. Base A’s resulting cumulative distribution
indicates that responses may be too risk-taking for the
organization’s risk preference, while Base B and Base C may
be too risk-averse. The results suggest these three locations
require additional review of their responses. After investi-

gation, it was found that Base A had the lowest average
TMDI value of all 79 locations in the survey. Base A may be
under-valuing its facilities compared to other similar
campus locations and may benefit from facility disposal or
asset redistribution. For example, Base A is geographically
located such that many of the community support
functions, e.g., lodging, childcare, grocery, and gym
facilities, are replicated off-base by private entities.
Divesting these asset types could remedy the graphical
result and lower the total operating costs of the base.

Base B and Base C are located in geographically similar
locations outside of the United States and require
additional critical infrastructure due to their required
independence from the local community and proximity to
kinetic threat. These points alone may justify the categorial
risk aversion, and decision-makers should look for
opportunities to re-balance base B and C’s risk profile with
system redundancies or look to redistribute critical assets to
locations within geographic proximity of Bases B and C to
mitigate risk-aversion. Base D and E are both within the
95% prediction bounds and suggest that although Base D
seems more risk-taking than Base E, the difference in risk
attitude is acceptable given the organization’s thresholds
and the Bases’ have a balanced risk profile.

The multiple assumptions made to simulate data at
different corporate hierarchy levels is a significant limitation
of this work. Although the system’s membership functions
and rules were estimated with realism and simplicity in mind,
it is the responsibility of the using organization to calibrate
the system so results fit their need. These assumptions make
it possible to create a consequence of failure risk assessment
framework that considers higher hierarchical level objectives.
Weighting each hierarchical level is possible to change
leadership influence but was not investigated for this research
due to the added complexity of inclusion and the
formulation’s theoretical nature. Future research is needed

FIGURE 7.—Example of how a facility’s tactical MDI score changes when senior-level experts evaluate it. This may indicate the facility
operations are secondary to other facilities at the tactical level but critically important to the organization as a whole. This information
must be captured for decision-makers to effectively prioritize projects and analyze risk.
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for different types of organizational hierarchy templates and
democratic-autocratic weighting changes.

Due to the application of this methodology within
national defense, the protection of SMDI and OMDI data is
a necessary requirement and limitation of this research.
When directly linking specific assets to an operational or
strategic priority, this information can be used not just for
the benefit of the organization but also to the benefit of an
adversary when looking for system vulnerabilities. This can
cause additional costs from security measures needed to
protect information and clear access to vetted individuals
only.

This framework can prioritize facility projects and
identify risk profiles at the tactical, operational, or strategic
level. This framework links facilities to the organizational
objectives they enable without the use of monetary
objectives or profits and can benefit similarly organized
public and private entities who have a hierarchical
structure, e.g., education, healthcare, corporate, or gov-
ernment agencies. An advantage of using fuzzy logic for the
risk assessment is that the system can be easily manipulated
to add or change components without additional com-
plexities to the system architect or decision-makers.

6.0 Conclusion

Different department levels within a corporation provide
valuable information needed to properly quantify a

facility’s consequence of failure (CoF). This CoF metric can
be used to ensure organizations are funding the most
critical projects to support their overall objectives (Savatgy
et al. 2019). The fuzzy logic-based architecture proposed
here is an extension of DePalmer et al.’s framework and
case study of the U.S. Air Force’s Mission Dependency
Index (MDI) metric. This research is intended to improve
the previous project prioritization methodology and aid
with risk-based decision support. The inter-dependency
values added to the methodology create openings for the
CoF score to change as risk information is aggregated from
senior-level departments. These additions eliminate the
need for the Air Force’s subjective priority point ranking as
part of the CoF metric while simultaneously improving the
project prioritization methodology to be more accurate and
less biased.

Cognitive biases, individual decision styles, and risk
attitude can all plague technology-oriented methodologies
used for decision support (Phillips-Wren et al. 2019; Power
et al. 2019; Tversky and Kahneman 1974, 1992). These
individual influences can cause users to choose sub-optimal
decisions, which lead to wasted resources or unnecessary
facility failure of vulnerable, unfunded projects. The
previous methodology was improved by considering these
individual biases and determining the possible effects
personal risk attitude can have on desired results. These
results established acceptable risk thresholds that can
identify increased education needs, flag extreme responses,
or identify portfolio groups with unbalanced risk profiles.

FIGURE 8.—Example of five unique bases TMDI results with the risk boundaries for the cumulative distribution function.
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Portfolio managers and campus leaders need to ensure
limited resources are allocated appropriately to campus
construction and sustainment projects. Decision-makers
need to understand how a facility plays a role in an
organization’s objectives at all department levels while
maximizing the value of information collected and
minimizing the time, resources, and complexity required to
compare and prioritize projects. The tactical, operational,
and strategic MDI metric produced by this system is simple
and repeatable and can be used on large- and small-scale
facility networks for applications other than project
prioritization like balancing the overall risk profile of a
location. Decision support tools need to consider how
personal biases and attitudes can affect the responses, and
quality control specialists must create simple methods to
quickly vet responses. This novel framework integrates
senior-level department knowledge with a previously
created consequence of failure assessment methodology to
produce a facility importance metric that meets the needs
of decision-makers, portfolio managers, and campus
leadership and helps prioritize limited resources.
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